4.5 Article

State parameter-based thermomechanical constitutive model for saturated fine-grained soils

期刊

CANADIAN GEOTECHNICAL JOURNAL
卷 58, 期 7, 页码 1045-1058

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/cgj-2019-0322

关键词

temperature effects; constitutive relations; clays; plasticity; state parameter

资金

  1. National Natural Science Foundation of China [41502271]
  2. State Key Laboratory for GeoMechanics and Deep Underground Engineering China University of Mining and Technology [SKLGDUEK1802]
  3. International Mobility Fund from the University of Leeds
  4. Taishan Scholar Program of Shandong Province, China [tsqn201909016]
  5. Qilu Scholar Program of Shandong University
  6. Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China [N_PolyU534/20]

向作者/读者索取更多资源

This study introduces a two-surface constitutive model to describe the thermomechanical behavior of saturated fine-grained soils at different consolidation states, incorporating a thermal-dependent parameter relationship to consider the effects of temperature. The model establishes a nonlinear relationship and a simple flow rule based on experimental observations, and successfully validates against experimental results.
This paper presents a two-surface constitutive model for describing thermomechanical behaviour of saturated fine-grained soils at both normally consolidated and overconsolidated states. A thermal-dependent stress ratio-state parameter relation is adopted to account for the effects of temperature on the shape of the state boundary surface (SBS) of soils. In the model, both the size and the shape of the SBS are allowed to vary with temperature, which is evidenced by thermal variation of the mechanical yield loci and the shifts of the normal consolidation line (NCL) and the critical state line (CSL) upon heating and (or) cooling. A thermal yield surface is added for modelling the isotropic thermal deformation of soils more accurately, in particular at overconsolidated states. The mechanical and thermal yield mechanisms are coupled through the temperature-dependent preconsolidation pressure that is controlled by a volumetric hardening law. Based on experimental observations, a nonlinear relationship between the spacing ratio and temperature changes is defined and a simple thermal dependent non-associated flow rule is proposed. The model is validated against some selected experimental results of several soils tested under various mechanical and thermal paths such as drained isotropic heating and cooling, drained and undrained triaxial compression at non-isothermal conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据