4.7 Article

Machine learning application identifies novel gene signatures from transcriptomic data of spontaneous canine hemangiosarcoma

期刊

BRIEFINGS IN BIOINFORMATICS
卷 22, 期 4, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbaa252

关键词

dog; cancer; machine learning; transcriptome; gene expression; pathology

资金

  1. National Canine Cancer Foundation [JHK15MN-004]

向作者/读者索取更多资源

Angiosarcomas are rare soft-tissue sarcomas with poor clinical outcomes due to their aggressive behavior and high metastatic potential. Hemangiosarcomas in dogs share features with human angiosarcomas, characterized by irregular vascular channels and a mixture of endothelial cells. Machine learning models using transcriptomic data show promise for diagnosing hemangiosarcoma and identifying novel gene signatures for potential applications in treating this vascular malignancy.
Angiosarcomas are soft-tissue sarcomas that form malignant vascular tissues. Angiosarcomas are very rare, and due to their aggressive behavior and high metastatic propensity, they have poor clinical outcomes. Hemangiosarcomas commonly occur in domestic dogs, and share pathological and clinical features with human angiosarcomas. Typical pathognomonic features of this tumor are irregular vascular channels that are filled with blood and are lined by a mixture of malignant and nonmalignant endothelial cells. The current gold standard is the histological diagnosis of angiosarcoma; however, microscopic evaluation may be complicated, particularly when tumor cells are undetectable due to the presence of excessive amounts of nontumor cells or when tissue specimens have insufficient tumor content. In this study, we implemented machine learning applications from next-generation transcriptomic data of canine hemangiosarcoma tumor samples (n = 76) and nonmalignant tissues (n = 10) to evaluate their training performance for diagnostic utility. The 10-fold cross-validation test and multiple feature selection methods were applied. We found that extra trees and random forest learning models were the best classifiers for hemangiosarcoma in our testing datasets. We also identified novel gene signatures using the mutual information and Monte Carlo feature selection method. The extra trees model revealed high classification accuracy for hemangiosarcoma in validation sets. We demonstrate that high-throughput sequencing data of canine hemangiosarcoma are trainable for machine learning applications. Furthermore, our approach enables us to identify novel gene signatures as reliable determinants of hemangiosarcoma, providing significant insights into the development of potential applications for this vascular malignancy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据