4.5 Article

Sestrin1 exerts a cytoprotective role against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by potentiating Nrf2 activation via the modulation of Keap1

期刊

BRAIN RESEARCH
卷 1750, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.brainres.2020.147165

关键词

Oxygen-glucose deprivation/reoxygenation; Keap1; Neuron; Nrf2; Sesn1

向作者/读者索取更多资源

The study demonstrates that Sesn1 exerts neuroprotective effects on neurons following cerebral ischemia/reperfusion injury by potentiating Nrf2 activation to ameliorate OGD/R-induced damage.
Sestrin1 (Sesn1) acts as a stress-inducible protein that performs a remarkable cytoprotective function upon diverse cellular stresses. However, whether Sesn1 exerts a cytoprotective role in neurons following cerebral ischemia/reperfusion injury is unknown. The goal of this work was to evaluate the role of Sesn1 in oxygen glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury in vitro. The induction of Sesn1 was found in neurons exposed to OGD/R treatment. The silencing of Sesn1 rendered neurons more vulnerable to OGD/R injury, while the up-regulation of Sesn1 ameliorated OGD/R-induced neuronal injury by reducing apoptosis and the generation of reactive oxygen species (ROS). Furthermore, the up-regulation of Sesn1 promoted the activity of the nuclear factor-erythroid 2-related factor 2 (Nrf2) by down-regulating the expression of the Kelchlike ECHassociated protein 1 (Keap1). The restoration of Keap1 or the suppression of Nrf2 remarkably abolished the Sesn1-induced neuroprotection effects in OGD/R-exposed neurons. In summary, our work indicates that Sesn1 is a remarkable neuroprotective protein that potentiates Nrf2 activation via Keap1 to ameliorate OGD/R-induced injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据