4.7 Article

Unlocking the relationships among population structure, plant architecture, growing season, and environmental adaptation in Henan wheat cultivars

期刊

BMC PLANT BIOLOGY
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-020-02674-z

关键词

Elite wheat cultivars; Population structure; Yield; GWAS; Selective sweep

资金

  1. Special Fund for Henan Agricultural Research System [S2010-01-G03]
  2. National Key Research and Development Program of China [2016YFD0100402]
  3. Programs for Science and Technology of Henan [192102110138]
  4. Special project of Henan Province science and technology foundation and condition

向作者/读者索取更多资源

BackgroundEcological environments shape plant architecture and alter the growing season, which provides the basis for wheat genetic improvement. Therefore, understanding the genetic basis of grain yield and yield-related traits in specific ecological environments is important.ResultsA structured panel of 96 elite wheat cultivars grown in the High-yield zone of Henan province in China was genotyped using an Illumina iSelect 90K SNP assay. Selection pressure derived from ecological environments of mountain front and plain region provided the initial impetus for population divergence. This determined the dominant traits in two subpopulations (spike number and spike percentage were dominance in subpopulation 2:1; thousand-kernel weight, grain filling rate (GFR), maturity date (MD), and fertility period (FP) were dominance in subpopulation 2:2), which was also consistent with their inheritance from the donor parents. Genome wide association studies identified 107 significant SNPs for 12 yield-related traits and 10 regions were pleiotropic to multiple traits. Especially, GY was co-located with MD/FP, GFR and HD at QTL-ple5A, QTL-ple7A.1 and QTL-ple7B.1 region. Further selective sweep analysis revealled that regions under selection were around QTLs for these traits. Especially, grain yield (GY) is positively correlated with MD/FP and they were co-located at the VRN-1A locus. Besides, a selective sweep signal was detected at VRN-1B locus which was only significance to MD/FP.ConclusionsThe results indicated that extensive differential in allele frequency driven by ecological selection has shaped plant architecture and growing season during yield improvement. The QTLs for yield and yield components detected in this study probably be selectively applied in molecular breeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据