4.4 Article

Candidate risk genes for bipolar disorder are highly conserved during evolution and highly interconnected

期刊

BIPOLAR DISORDERS
卷 23, 期 4, 页码 400-408

出版社

WILEY
DOI: 10.1111/bdi.12996

关键词

-

资金

  1. Department of Psychiatry and Behavioral Medicine at LSU Health Shreveport

向作者/读者索取更多资源

The study found that BPD risk genes are highly conserved across species, enriched for essential genes and those associated with lethality, and exhibit significantly increased gene-gene interactions. Additionally, the identification of syntenic blocks may provide insights into molecular pathways and related diseases associated with BPD.
Objectives Bipolar disorder (BPD) is a highly heritable psychiatric disorder whose genetic complexity and pathogenetic mechanisms are still being unraveled. The main goal of this work was to characterize BPD risk-gene candidates (identified by Nurnberger et al., JAMA Psychiatry 71:657, 2014, and Stahl et al., Nat. Genet. 51:793, 2019) with respect to their evolutionary conservation, associated phenotypes, and extent of gene-gene interactions. Methods Database searches and BLAST were used to identify homologous counterparts of human BPD risk genes in C. elegans, zebrafish, and Drosophila. Phenotypes associated with the C. elegans genes were annotated and searched. With GeneMANIA, we characterized and quantified gene-gene interactions among members of the BPD gene set in comparison to randomly chosen gene sets of the same size. Results BPD risk genes are highly conserved across species and are enriched for essential genes and genes associated with lethality and altered life span. They are significantly more interactive with each other in comparison to random genes. We identified syntenic blocks of risk genes, which provided potential insights into molecular pathways and co-morbidities associated with BPD including coronary disease, obesity, and decreased life expectancy. Conclusions BPD risk genes appear to be special in terms of their degree of conservation, interconnectedness, and pleiotropic effects that extend beyond a role in brain function. Key hub genes or pleiotropic regulatory components may represent attractive targets for future drug discovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据