4.8 Article

Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating: Microbial and metabolic insights

期刊

BIORESOURCE TECHNOLOGY
卷 313, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.123706

关键词

Anaerobic co-digestion; Powdered activated carbon; Acidification alleviation; Methane productivity; Methane metabolism

资金

  1. National Key Research and Development Program of China [2018YFC1901000]
  2. Key Project of Shanghai Science and Technology Commission [18391902600]
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Low methanogenic efficiency caused by excess acidification is a challenge during anaerobic digestion. This study indicated that both granular activated carbon (GAC) and powdered activated carbon (PAC) promoted the start-up of methanogenesis and methane output in anaerobic co-digestion of food waste and fruit-vegetable waste. Moreover, PAC performed better than GAC. Specifically, the highest cumulative methane yield and shortest lag phase were observed in 5 g/L PAC and 10 g/L PAC group, 22.0% higher and 62.5% shorter than that without activated carbon supplementation, respectively. PAC facilitated the methane productivity by effectively accelerating volatile fatty acids (VFAs) consumption and thereby alleviating acidification. Syntrophic VFAs oxidizing bacteria (Gelria and Syntrophomonas) and direct interspecies electron transfer related microorganisms (Geobacter and Methanosarcina) were remarkably enriched by PAC. Furthermore, metagenomic analysis showed that both PAC and GAC might facilitate the electron transfer between microbes by acting as the electrical bridge and enhance both hydrogenotrophic and aceticlastic pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据