4.6 Article

Bark decomposition in white oak soil outperforms eastern hemlock soil, while bark type leads to consistent changes in soil microbial composition

期刊

BIOGEOCHEMISTRY
卷 150, 期 3, 页码 329-343

出版社

SPRINGER
DOI: 10.1007/s10533-020-00701-7

关键词

Home-field advantage (HFA); Decomposition; Bark; Temperate forest; Eastern hemlock; White oak; Microbial ecology; Ecosystem ecology

资金

  1. USDA National Institute of Food and Hatch Appropriations [PEN04651, PEN04591]
  2. Penn State's Forestland Management Office in the College of Agricultural Sciences
  3. National Science Foundation Critical Zone Observatory program [EAR 07-25019, EAR 12-39285, EAR 13-31726]
  4. Penn State's Button Waller Fellowship
  5. National Science Foundation PRFB Award [1907242]

向作者/读者索取更多资源

Bark decomposition is an underexamined component of soil carbon cycling and soil community assembly. Numerous studies have shown faster decomposition of leaf litter in home environments (i.e. within soil adjacent to the plant that produced the leaves), suggesting potential legacy effects from previous deposition of similar litter. This is expected to occur through, in part, accumulation of microorganisms that metabolize substrates the litter provides. Whether a similar home-field advantage (HFA) exists for bark decomposition is unknown, but this dynamic may differ because annual bark deposits to soil are minimal relative to leaf deposits. We hypothesized that (1) as with leaf litter, bark will be better decomposed near to the tree from which it was collected, and (2) that decomposing bark can initiate change in soil microbial composition. To test these hypotheses, we used a full factorial design that included two bark types (collected from eastern hemlock,Tsuga canadensis, and white oak,Quercus alba) and two soil types ('home' and 'away') within a temperate mixed hardwood forest at the Shale Hills Catchment in central Pennsylvania, USA. Bark was excised from 25 replicates of each tree type, buried in either home or away soil, and incubated belowground from July 2017 to June 2018. Decomposition was assessed through proportionate mass loss over time, while microbial composition in the bark and adjacent soil was assessed through high-throughput sequencing of 16S rRNA gene and fungal ITS fragments. Overall, bark degraded faster in white oak soils, and there was also an effect of bark type on decomposition. Although white oak bark decomposed more quickly in its home environment, this could be due to either soil conditioning or inherent differences in the soils in which each species grows. Soil microbial assemblages also sorted according to bark type rather than soil type, suggesting that bark strongly influences the composition of nearby microorganisms during decomposition. Our results suggest that both bark type and soil type are important factors during bark decomposition, but our findings suggest no clear evidence for HFA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据