4.7 Article

Assessment of WRF-ARW model parameterization schemes for extreme heavy precipitation events associated with atmospheric rivers over West Coast of India

期刊

ATMOSPHERIC RESEARCH
卷 249, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.atmosres.2020.105330

关键词

WRF; Microphysics; Cumulus physics; Atmospheric rivers; Heavy precipitation; Summer monsoon

资金

  1. Indian Institute of Technology, Kharagpur

向作者/读者索取更多资源

This study investigates the simulation of heavy precipitation events over the West Coast of India associated with atmospheric rivers using the ARW-WRF model. The sensitivity of different parameterization schemes was evaluated, with deviations and advantages observed in the model simulations.
This study attempts to investigate the simulation of heavy precipitation events (HPEs) over the West Coast of India associated with atmospheric rivers (ARs) using the Advanced Research Weather Research and Forecasting (ARW-WRF) model. The study evaluates the sensitivity of five microphysical (Lin, WSM6, Goddard, Thompson, and Morrison) and cumulus (KF, BMJ, Grell3D, Tidtke, and GD) parameterization schemes to explore the capability to reproduce the AR associated HPEs. The model simulations were reasonably successful at reproducing key structural and synoptic characteristics of atmospheric rivers, including well-defined corridors of strong water vapor transport, meteorological variables and circulation features. Deviations in Rainfall and Wind profiles were observed in simulations among the different parameterization schemes. The model better simulated the AR related precipitation using the Lin, Thompson MP and KF, Grell3D CU schemes when compared to observations, and attributed to the moisture laden tendency of the schemes. Nonetheless, differences in precipitation distribution and overestimation of winds among the model runs using different microphysical and cumulus physics schemes were noted. The study highlights that simulation of AR associated HPEs using high-resolution mesoscale mode with suitable representations of physical parameterization schemes are useful for disaster management and to minimize the loss of fatalities and property.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据