4.6 Article

Modeling protoplanetary disk SEDs with artificial neural networks: Revisiting the viscous disk model and updated disk masses

期刊

ASTRONOMY & ASTROPHYSICS
卷 642, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202038352

关键词

accretion, accretion disks; planets and satellites: formation; protoplanetary disks; stars: pre-main sequence

资金

  1. European Southern Observatory (ESO)
  2. National Science Foundation under CAREER grant [AST-1455042]

向作者/读者索取更多资源

We model the spectral energy distributions (SEDs) of 23 protoplanetary disks in the Taurus-Auriga star-forming region using detailed disk models and a Bayesian approach. This is made possible by combining these models with artificial neural networks to drastically speed up their performance. Such a setup allows us to confront alpha-disk models with observations while accounting for several uncertainties and degeneracies. Our results yield high viscosities and accretion rates for many sources, which is not consistent with recent measurements of low turbulence levels in disks. This inconsistency could imply that viscosity is not the main mechanism for angular momentum transport in disks, and that alternatives such as disk winds play an important role in this process. We also find that our SED-derived disk masses are systematically higher than those obtained solely from (sub)mm fluxes, suggesting that part of the disk emission could still be optically thick at (sub)mm wavelengths. This effect is particularly relevant for disk population studies and alleviates previous observational tensions between the masses of protoplanetary disks and exoplanetary systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据