4.7 Article

Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 124, 期 -, 页码 17-26

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2015.11.021

关键词

Nano particles; Delamination; Fibre bridging; Damage tolerance; Electro-spinning

资金

  1. Agency for Innovation by Science and Technology, Flanders
  2. IWT Strategic Basic Research Grant [141344]

向作者/读者索取更多资源

The susceptibility to delamination is one of the main concerns in many advanced laminated composite applications. Laminates interleaved with electrospun nanofibrous veils provide a potential solution in order to increase the material's resistance to interlaminar fracture. Previous studies have shown that nanofibres are able to bridge microcracks in the laminates resulting in an increased interlaminar fracture toughness (IFT). However, the exact micromechanisms resulting in these nanofibre bridging zones are still unclear. In this article, aligned nanofibrous structures are used to identify and study the different micromechanisms which take place during Mode II crack propagation. Three nanofibrous veil morphologies with a distinct orientation of the nanofibres are used: (1) a random deposition of nanofibres, (2) nanofibres oriented parallel to the crack growth direction, and (3) nanofibres oriented perpendicular to the crack growth direction. A thorough analysis of the fracture surface of tested specimens and crack path behaviour is performed in order to determine the micromechanisms associated with the development of nanofibre bridging zones. A strong effect of the nanofibre orientation distribution on the Mode II IFT and the underlying toughening mechanisms was observed: different micromechanisms were observed depending on the nanofibre orientation. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据