4.7 Article

Hepatic biochemical, morphological and molecular effects of feeding microalgae and poultry oils to gilthead sea bream (Sparus aurata)

期刊

AQUACULTURE
卷 532, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aquaculture.2020.736073

关键词

Fatty acids; Lipid metabolism; Novel lipid sources

资金

  1. EU funded project PerformFISH (Integrating Innovative Approaches for Competitive and Sustainable Performance across the Mediterranean Aquaculture Value Chain) [727610]
  2. Agencia Canaria de Investigacion, Innovacion y Sociedad de la Informacion de la Consejeria de Economia, Industria, Comercio y Conocimiento and Fondo Social Europeo (FSE) Programa Operativo Integrado de Canarias

向作者/读者索取更多资源

This study investigated how the combination of poultry oil with microalgae oils could modulate hepatic lipid metabolism in gilthead sea bream juveniles. It was found that combining microalgae with poultry oil could be an alternative lipid and essential fatty acid source to fish oil in marine fish diets.
The present work investigated how the combination of poultry oil with microalgae oils, rich in eicosapentaenoic acid and docosahexaenoic acid (ED diets) or n-6 docosapentaenoic acid and n-3 docosahexaenoic acid (DD diets) modulates hepatic lipid metabolism in gilthead sea bream juveniles. Diets were tested using two different fishmeal contents (15% and 7.5%) and compared against a fish oil-based diet (CTRL) and two negative control diets based on poultry oil as lipid source (PO diets). After 74 days of feeding, sea bream fed 15% FM ED or DD diets showed similar daily growth index to those fed CTRL, while those fed PO diets caused reduced growth. Fish livers reflected the highest contents in n-3 long-chain polyunsaturated fatty acids when fed CTRL, ED or DD diets, which down-regulated fas, scd-1a, fads2, lpl and cpt1, reducing hepatic lipid accumulation and hepatocytes size. In contrast, fish fed PO diets showed the lowest deposition of n-3 long-chain polyunsaturated fatty acids and the highest oleic acid in liver, leading with the highest hepatosomatic index due to increased liver lipids. Therefore, these fish revealed a severe hepatic steatosis associated with an increased expression of lipogenesis-related genes, particularly fas, lpl and sbrep1. Furthermore, PO diets seemed to activate desaturation pathways in fish livers, reflected by the highest accumulation of fatty acids that are products from desaturases and the highest fads2 and scd-1a expressions. The reduction of the dietary fishmeal content to 7.5% lowered fish growth, although hepatic lipid metabolism seemed to be more affected by FO replacement than FM replacement. Combining microalgae with poultry oil could be an alternative lipid and essential fatty acid source to fish oil in marine fish diets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据