4.7 Article

Molecular dynamics analysis of moisture effect on asphalt-aggregate adhesion considering anisotropic mineral surfaces

期刊

APPLIED SURFACE SCIENCE
卷 527, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.146830

关键词

Molecular dynamics; Asphalt-aggregate interface; Surface anisotropy; Adhesion behavior; Moisture susceptibility

资金

  1. Fundamental Research Funds for the Central Universities [300102219307]

向作者/读者索取更多资源

The objective of this work is to analyze the effect of moisture on the bonding and debonding behaviors between asphalt and aggregates based on molecular dynamics (MD) simulation, considering the anisotropic characteristics of mineral surfaces. Full atomistic models adopted for MD simulations were constructed using the 12-component asphalt model and two types of representative minerals, alpha-quartz and calcite. Anisotropic wettability was studied by simulating the dynamic processes of a water nano-droplet spreading on anisotropic mineral surfaces. An improved energy ratio (ER) considering the residual adhesion between asphalt and aggregates in a moist state was established to evaluate the moisture susceptibility of asphalt mixtures. It was found that (1) anisotropic mineral surfaces have a significant influence on the bonding properties and moisture susceptibilities of asphalt mixtures; (2) the concentrated hydroxyl groups on the hydroxylated alpha-quartz surfaces significantly increase surface hydrophilicity and reduce the resistance to water damage; (3) freshly-cleaved calcite surfaces contribute the most to moisture susceptibility, while un-hydroxylated alpha-quartz surfaces contribute the least among the mineral surfaces studied. This simulation work provides insights to better understand the moisture damage mechanisms of asphalt mixtures at a microscopic level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据