4.7 Article

First-principles study of mechanical, electronic and optical properties of Janus structure in transition metal dichalcogenides

期刊

APPLIED SURFACE SCIENCE
卷 526, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.146730

关键词

Janus transition metal dichalcogenides; Ideal strength; Density functional theory; Optical absorption

资金

  1. Vietnam's National Foundation for Science and Technology Development (NAFOSTED) [107.02-2016.18]
  2. JSPS KAKENHI [JP20K15178, JP18H01810]
  3. Frontier Research Institute for Interdisciplinary Sciences, Tohoku University

向作者/读者索取更多资源

Using first-principles calculations, we investigate mechanical, electronic and optical properties of so-called Janus structure for monolayer transition metal dichalcogenides (TMDs), MXY (M = Mo, W; X or Y = S, Se, Te; X not equal Y), in which chalcogen atoms at both side of the TMDs are not the same elements. Our calculated results indicate that WSSe shows the highest stiffness and the most ideal strength among the Janus TMDs due to their strongest ionic bond. In the unstrain cases, WSeTe, WSSe and MoSeTe are direct-gap semiconductors, while MoSSe, MoSTe and WSTe are indirect-gap semiconductors. The energy band gaps of the Janus TMDs decrease with increasing of the tensile strain due to the coupling between the p and d orbitals of the X/Y and M atoms, respectively. Furthermore, the tensile strain effectively modulates the optical absorption of the Janus TMDs. For example, the optical absorption of MoSSe is three times stronger at a photon energy of 2.5 eV. The calculated results of Janus TMDs provide useful information for applications in nanoelecromechanical, optoelectronic, and photocatalyst devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据