4.7 Article

Rapid degradation of aqueous doxycycline by surface CoFe2O4/H2O2 system: behaviors, mechanisms, pathways and DFT calculation

期刊

APPLIED SURFACE SCIENCE
卷 526, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.146557

关键词

CoFe2O4; Doxycycline; Heterogeneous Fenton; Electronic transfer; DFT calculation

资金

  1. State Key Research Development Program of China [2019YFC0408500]
  2. Natural Science Foundation of China [2196182, 61873253, 61875206]
  3. Science and Technology Major Projects of Anhui Province [18030801104]
  4. China Postdoctoral Science Foundation [2019M652227]

向作者/读者索取更多资源

Heterogeneous Fenton technology is considered to be an effective method to solve the issues of antibiotic pollutants. In this study, a highly active surface exposed CoFe2O4 catalyst was fabricated to activate hydrogen peroxide (H2O2) to degrade aqueous doxycycline (DC). Batch experiments investigated the influence of different factors such as CoFe2O4 dosage, H2O2 dosage, contaminant concentration and pH on DC elimination. Remarkably, the results showed that 1.2 g/L CoFe2O4 with 10 mM H2O2 could quickly remove 92% DC of 20 ppm under neutral pH conditions in 10 min, and after 5 cycles, the removal of DC still remained above 85%. DMPO-X signals captured by EPA illustrated abundant hydroxyl radicals ('OH) were produced in the surface CoFe2O4/H2O2 system swiftly and that was the dominant active oxygen species in the degradation of DC. The valence changes of Co3+/Co2+ and Fe3+/Fe2+ appeared on the surface of CoFe2O4 provided many electrons to participate in the process of activating H2O2. Density functional theory (DFT) calculation was conducted to reveal preferable sites of different atoms on DC for radicals attacking. Combined with LC-MS analysis, two possible degradation pathways were proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据