4.7 Article

Interpreting network knowledge with attention mechanism for bearing fault diagnosis

期刊

APPLIED SOFT COMPUTING
卷 97, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2020.106829

关键词

Interpretability; Bearing fault diagnosis; Attention mechanism

资金

  1. National Natural Science Foundation of China [51875433, 51705397]
  2. Young Talent fund of University Association for Science and Technology in Shaanxi of China [20170502]
  3. Natural Science Foundation of Shaanxi province [2019KJXX-043]
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Condition monitoring and fault diagnosis of bearings play important roles in production safety and limiting the cost of maintenance on a reasonable level. Nowadays, artificial intelligence and machine learning make fault diagnosis gradually become intelligent, and data-driven intelligent algorithms are receiving more and more attention. However, many methods use the existing deep learning models directly for the analysis of mechanical vibration signals, which is still lack of interpretability to researchers. In this paper, a method based on multilayer bidirectional gated recurrent units with attention mechanism is proposed to access the interpretability of neural networks in fault diagnosis, which combines the convolution neural network, gated recurrent unit, and the attention mechanism. Based on the attention mechanism, the attention distribution of input segments is visualized and thus the interpretability of neural networks can be further presented. Experimental validations and comparisons are conducted on bearings. The results present that the proposed model is effective for localizing the discriminative information from the input data, which provides a tool for better understanding the feature extraction process in neural networks, especially for mechanical vibration signals. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据