4.6 Article

High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector

期刊

APPLIED PHYSICS LETTERS
卷 117, 期 15, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0016052

关键词

-

资金

  1. National Natural Science Foundation of China [61875195, 61975256, 51973208]
  2. Jilin Province Science and Technology Research Project [20190302087GX]
  3. Japan Science and Technology Agency (JST), ERATO
  4. Adachi Molecular Exciton Engineering Project (JST ERATO) [JPMJER1305]
  5. International Institute for Carbon-Neutral Energy Research [WPI-I2CNER]

向作者/读者索取更多资源

High performance organic semiconductor lasers (OSLs), especially those under current injection, have been sought for decades due to their potentially great applications in fields such as spectroscopy, displays, medical devices, and optical interconnection. The design and fabrication of high-quality resonators is a prerequisite for high performance OSLs. In the case of planar microcavities, the fabrication process of top distributed Bragg reflectors (DBRs) usually requires electron beam evaporation or manual lamination on top of organic thin-film layers, which can lead to issues including degradation of the organic materials, large-scale non-uniformity, and difficulties for current injection. Here, we report a non-destructive way of fabricating a top DBR by thermal evaporation. The top DBR based on thermally evaporated alternative TeOx/LiF stacks shows low morphological roughness, high process tolerance, and high reflectivity. Moreover, the deposition process causes negligible damage to the organic thin-film layers underneath. With the combination of a conventional e-beam evaporated bottom DBR, a high performance planar microcavity OSL with a low threshold of 1.7 mu J cm(-2), an emission linewidth of 0.24nm, and an angular divergence of <3 degrees has been achieved under nitrogen laser pumping. Similar performance, with a high Gaussian beam quality comparable with that of an ideal diffraction-limited beam, was also obtained under diode pumping, showing the potential of this technique for building compact and cost-effective organic lasers with good beam quality. Our result will open a promising route for future high performance microcavity optoelectronic devices, especially for laser devices under current injection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据