4.8 Article

Optimal operation strategy for interconnected microgrids in market environment considering uncertainty

期刊

APPLIED ENERGY
卷 275, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.115336

关键词

Multi-microgrid system; Decentralized framework; Bi-level energy dispatch; Uncertainty; Power Internet of things

资金

  1. Science and Technology Project of State Grid Corporation of China [5400-202022113A-0-0-00]

向作者/读者索取更多资源

The interconnected microgrid system (IMS) is a promising solution for the problem of growing penetration of renewable-based microgrids into the power system. To optimally coordinate the operation of microgrids owned by different owners while considering uncertainties in market environment, a bi-level distributed optimized operation method for IMS with uncertainties is proposed in this paper. A hierarchical and distributed operational communication architecture of IMS is first established. A bi-level distributed optimization model was built for IMS, where at the upper level, the IMS operates purchase-sale mode or demand response mode with the distribution network operator and optimizes the trading power with microgrids to maximize revenue. At the lower level, the chance constraint programming is used to describe and deal with the uncertainty of renewable energy and loads and optimize the output and energy storage of distributed energy with the goal of minimum cost. The analytical target cascading and augmented Lagrange method are combined to decouple and reconstruct the bilevel model for distributed solution and establishing a fair price mechanism. The optimal solutions of the problem are obtained through parallel iteration, in which the price signal plays a coordinated role in the distributed iterative optimization process. Abundant case studies verify the advantages of the model and the performance of the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据