4.8 Article

Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material

期刊

APPLIED ENERGY
卷 275, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.115353

关键词

MEPCM; Energy storage; Simultaneous charging and discharging; Flow rate combination

资金

  1. National Key Research and Development Program of China [2018YFF0216003]

向作者/读者索取更多资源

A latent thermal energy storage system may operate under a simultaneous charging and discharging condition due to the mismatch between intermittent renewable energy supply and unpredictable energy demand. Adopting a microencapsulated phase change material in a thermal energy storage system can prevent material leakage during the phase change process. In this study, an experimental system is established for latent thermal energy storage, in which microencapsulated phase change materials mixed with carbon fibers are used as a latent energy storage material. The objective of this study is to investigate the performance of a latent thermal energy storage system under simultaneous charging and discharging conditions. The variations in the temperature and stored energy quantity in the energy storage unit and the charging/discharging power are analyzed under different charging/discharging flow rate combinations and different initial states of the phase change material. Depending on the initial state of phase change material, the dominant heat transfer mode is gradually transferred from a process of energy storage or energy release to a direct heat transfer between heating water and cooling water in stable states. The time duration is about 7500 s to reach the stable state for the system with initially solid phase change material. Under the same flow rate combination, the stable temperature of the energy storage unit is higher for initially melted phase change materials. The results show a promising potential in practical applications for thermal energy storage systems. The system design and material selection may be helpful in energy storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据