4.8 Article

Understanding the potential band position and e-/h+ separation lifetime for Z-scheme and type-II heterojunction mechanisms for effective micropollutant mineralization: Comparative experimental and DFT studies

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 273, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119034

关键词

Photocatalysis; Organic pollutants; Z-scheme; Sunlight; Microwave hydrothermal; Treatment

资金

  1. National Research Foundation [NRF-2017 R1D1A1B03029441]
  2. Institutional Project of Korea Institute of Science and Technology [2E29280]

向作者/读者索取更多资源

A new approach to determine the importance of band potential by comparing two different electron charge transfer mechanism, via Z-scheme and type-II heterojunction. Through microwave hydrothermal (MWH) treatment and subsequent thermal polycondensation, the released ammonia gas from the formation of oxidized GCN simultaneously reducing the surface of TiO2 (designated as mwh-CNTO), hence creating a sub-gap state between the interface of these two catalysts. Compared to pristine photocatalysts, mwh-CNTO-0.1 (0.1 g TiO2 with 6 g melamine) has shown superior photocatalytic activities (between 6 to 34-folds) under monochromatic LED (400 nm) and natural sunlight. Since TiO2 in the composite cannot be activated under LED, the bands alignment from type-II heterojunction decreases the overall band potential, resulting in mainly center dot O-2(-) (anionic) generated. Consequently, non-charged BPA was effectively degraded with a kinetic rate constant of 0.0310 min(-1), while negatively charged ATZ had much lower rate constant (0.0043 min(-1)) due to their repulsive properties. In contrast, natural sunlight (full spectrum) could not only activate both TiO2 and GCN of mwh-CNTO-0.1, but also induce Z-scheme mechanism via driving the photogenerated electrons (TiO2) through the created sub-gap state and ultimately recombining at valence band (VB) of GCN. As proven by detection of DMPO-center dot OH, scavenging tests and DFT modeling, this scheme effectively degraded both BPA (0.0379 min(-1)) and ATZ (0.0474 min(-1)) owing to the VB position of TiO2 being maintained to generate non-selective center dot OH. Overall, in comparison to other studies, the proposed Z-scheme on mwh-CNTO-0.1 had much higher energy efficiencies for BPA (8.2 x 10(-3) min(-1) W-1) and ATZ removal (1.0 x 10(-2) min(-1) W-1) under natural sunlight.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据