4.7 Article

14-Deoxy-11,12-didehydroandrographolide inhibits apoptosis in influenza A(H5N1) virus-infected human lung epithelial cells via the caspase-9-dependent intrinsic apoptotic pathway which contributes to its antiviral activity

期刊

ANTIVIRAL RESEARCH
卷 181, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.antiviral.2020.104885

关键词

H5N1; Antiviral; 14-Deoxy-11,12-dehydroandrographolide; Apoptosis; Caspase-9

资金

  1. National Key Research and Development Program of China [2017YFD0501000, 2017YFD0501500]
  2. Natural Science Foundation of Hubei Province [2017CFB209]

向作者/读者索取更多资源

Influenza A virus (IAV) infection represents a global health challenge. Excavating antiviral active components from traditional Chinese medicine (TCM) is a promising anti-IAV strategy. Our previous studies have demonstrated that 14-deoxy-11,12-didehydroandrographolide (DAP), a major ingredient of a TCM herb called Andrographis paniculata, shows anti-IAV activity that is mainly effective against A/chicken/Hubei/327/2004 (H5N1), A/duck/Hubei/XN/2007 (H5N1), and A/PR/8/34 (H1N1) in vitro and in vivo. However, the underlying anti-IAV molecular mechanism of DAP needs further investigation. In the present work, we found that DAP can significantly inhibit the apoptosis of human lung epithelial (A549) cells infected with A/chicken/Hubei/327/ 2004 (H5N1). After DAP treatment, the protein expression levels of cleaved PARP, cleaved caspase-3, and cleaved caspase-9, and the activities of caspase-3 and caspase-9 in H5N1-infected A549 cells were all obviously downregulated. However, DAP had no inhibitory effect on caspase-8 activity and cleaved caspase-8 production. Meanwhile, the efficacy of DAP in reducing the apoptotic cells was lost after using the inhibitor of caspase-3 or caspase-9 but remained intact after the caspase-8 inhibitor treatment. Moreover, DAP efficiently attenuated the dissipation of mitochondrial membrane potential, suppressed cytochrome c release from the mitochondria to the cytosol, and decreased the protein expression ratio of Bax/Bcl-2 in the mitochondrial fraction. Furthermore, the silencing of caspase-9 reduced the yield of nucleoprotein (NP) and disabled the inhibitory ability of DAP in NP production in A549 cells. Overall results suggest that DAP exerts its antiviral effects by inhibiting H5N1-induced apoptosis on the caspase-9-dependent intrinsic/mitochondrial pathway, which may be one of the anti-H5N1 mechanisms of DAP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据