4.7 Article

Optimization of the semi-hexagonal geometry of a composite crush structure by finite element analysis

期刊

COMPOSITES PART B-ENGINEERING
卷 93, 期 -, 页码 56-66

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2016.03.002

关键词

Glass fibres; Delamination; Finite element analysis (FEA); Numerical analysis

向作者/读者索取更多资源

In the present paper a numerical model for predicting the crushing behaviour of semi-hexagonal E-glass/polyester composite structures has been developed. Qualitative and quantitative analysis have shown that the results of the simulation are accurately predicted comparing with the experimental data. The peak force has been predicted with 7.5% of error while the mean force of the crushing process, the total amount of absorbed energy and the specific energy absorption capability have been simulated within 1% of error. Moreover the effect of the wall angle of the semi-hexagonal section and the effect of the overall size of the semi-hexagonal section have been numerically analyzed. The crushing process becomes stable when the wall angle is higher than 50 and the highest specific energy absorption values are obtained using the wall angle of 60 and wall length of 10 mm. Higher wall angles and wall lengths increases the stress concentration in the edges of the semi-hexagonal section and in consequence, the load carrying capability of the structure decreases dissipating less energy. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据