4.7 Article

Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2016.02.009

关键词

Interpenetrating phase composites; Mechanical testing; Mechanical properties; 3-Dimensional reinforcement; 3D printing

资金

  1. Masdar Institute of Science and Technology

向作者/读者索取更多资源

Interpenetrating phase composites (IPCs) are novel types of multifunctional composite materials. This work focuses on investigating experimentally and computationally the mechanical behavior of novel types of three-dimensional (3D) architectured two-phase IPCs. The current IPCs are architectured using several morphologies of the fascinating and mathematically-known triply periodic minimal surfaces (TPMS) that promote several multifunctional attributes. Specifically, the second hard reinforcing phase takes the architecture of one of the 3D non-intersecting and continuous TPMS-based solid sheets. The mechanical response of the 3D printed polymer-based IPCs is measured under uniaxial compression where the effect of varying the second-phase architecture and volume fraction is explored. Anisotropy induced by the 3D printing is also investigated. 3D finite element analysis has been performed and validated for predicting elastic properties of the various types of TPMS-based IPCs. The most effective TPMS architecture in enhancing the mechanical properties and damage-tolerance has been identified. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据