4.7 Article

Buckling and postbuckling of composite beams in hygrothermal environments

期刊

COMPOSITE STRUCTURES
卷 152, 期 -, 页码 665-675

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2016.05.029

关键词

Buckling; Postbuckling; Composite beams; Hygrothermal; Temperature

向作者/读者索取更多资源

This paper presents an investigation into the buckling and postbuckling of composite beams in hydrothermal environments. The free expansion due to both temperature variation and moisture absorption has been taken into consideration. In the meantime, the material properties are considered to be temperature-and moisture-dependent. A micromechanics-based model is proposed to consider the effect of the fiber volume fraction, temperature and moisture on the mechanical and hygrothermal material properties. The equilibrium equations are derived from the principle of virtual work where the small strain, moderate rotation assumption has been adopted. The classical Euler-Bernoulli beam (EBB) theory and the higher-order shear-deformation Reddy beam (RB) theory are presented. The critical buckling loads and the postbuckling amplitude are calculated at varying temperature, moisture, and fiber volume fraction. The model has been validated versus results published in the literature. The temperature variation has been found to significantly reduce the buckling load and increase the postbuckling amplitude. However, the contribution of the moisture concentration on the critical buckling loads has been found insignificant according to the assumptions made in this study. However, moisture has a noticeable effect on the postbuckling response. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据