4.7 Article

Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches

期刊

COMPOSITE STRUCTURES
卷 158, 期 -, 页码 92-100

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2016.09.031

关键词

CNT-reinforced cylindrical shell; Functionally graded; Higher-order shear deformation theory; Velocity feedback; LQR; Piezoelectric patches

资金

  1. National Natural Science Foundation of China [11402142, 51378448]
  2. Research Grants Council of the Hong Kong Special Administrative Region, China [9042047, CityU 11208914]

向作者/读者索取更多资源

The active vibration control of carbon nanotube (CNT) reinforced functionally graded composite cylindrical shell is studied in this investigation using piezoelectric materials. Piezoelectric patches are bonded onto the outer and inner surfaces of the cylindrical shell to act as the actuator and sensor, respectively. Thermal effects are taken into account. Reddy's high-order shear deformation theory is used in the structural modeling. The displacement fields of the piezoelectric actuator and sensor are given, according to the geometrical deformation relationship. The equation of motion of the CNT reinforced composite cylindrical shell is formulated by way of Hamilton's principle, the solution of which is derived using the assumed mode method. In the research surrounding active vibration control, the controller is designed using velocity feedback and LQR methods. Influences of thickness on the vibration control effects of the cylindrical shell are analyzed. The control results gained by way of different control methods are compared. The active control effects of cylindrical shells with different placements of piezoelectric patches are also researched. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据