4.8 Article

Controlled Assembly of Liquid Metal Inclusions as a General Approach for Multifunctional Composites

期刊

ADVANCED MATERIALS
卷 32, 期 46, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202002929

关键词

composites; liquid metals; multifunctional; soft matter; stretchable conductors

资金

  1. AFOSR Multidisciplinary University Research Initiative [FA9550-18-1-0566]
  2. U. S. Army Research Office [W911NF1810150, MCF-677785]
  3. U.S. Department of Defense (DOD) [W911NF1810150] Funding Source: U.S. Department of Defense (DOD)

向作者/读者索取更多资源

Soft composites that use droplets of gallium-based liquid metal (LM) as the dispersion phase have the potential for transformative impact in multifunctional material engineering. However, it is unclear whether percolation pathways of LM can support high electrical conductivity in a wide range of matrix materials. This issue is addressed through an approach to LM composite synthesis that focuses on the interrelated effects of matrix curing/solidification and droplet formation. The combined influence of LM concentration, particle size, and sedimentation is explored. By developing this approach, the functionalities that have been demonstrated with LM composites can be generalized to other matrix materials that impart additional functionality. Specifically, composites are synthesized using a biodegradable/reprocessable plastic (polycaprolactone), a hydrogel (poly(vinyl alcohol)), and a processable rubber (a styrene-ethylene-butylene-styrene derivative) to demonstrate wide applicability. This method enables synthesis of composites: i) with high stretchability and negligible electromechanical coupling (>600% strain); ii) with Joule-heated healing and reprocessability; iii) with electrical and mechanical self-healing; and iv) that can be printed. This approach to controlled assembly represents a widely applicable technique for creating new classes of LM composites with unprecedented multifunctionality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据