4.8 Article

Enabling High-Performance Tandem Organic Photovoltaic Cells by Balancing the Front and Rear Subcells

期刊

ADVANCED MATERIALS
卷 32, 期 38, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202002315

关键词

charge transport; exciton generation; nonfullerene; organic solar cells; tandem

资金

  1. Air Force Office of Scientific Research (AFOSR) [FA2386-18-1-4094]
  2. California Energy Commission [EPC-19-002]
  3. National Science Foundation of China (NSFC) [21734001]

向作者/读者索取更多资源

In tandem organic photovoltaics, the front subcell is based on large-bandgap materials, whereas the case of the rear subcell is more complicated. The rear subcell is generally composed of a narrow-bandgap acceptor for infrared absorption but a large-bandgap donor to realize a high open-circuit voltage. Unfortunately, most of the ultraviolet-visible part of the photons are absorbed by the front subcell; as a result, in the rear subcell, the number of excitons generated on large-bandgap donors will be reduced significantly. This reduces the (photo) conductivity and finally limits the hole-transporting property of the rear subcell. In this work, a simple and effective way is proposed to resolve this critical issue. To ensure sufficient photogenerated holes in the rear subcell, a small amount of an infrared-absorbing polymer donor as a third component is introduced, which provides a second hole-generation and transporting mechanism to minimize the aforementioned detrimental effects. Finally, the short-circuit current density of the two-terminal tandem organic photovoltaic is significantly enhanced from 10.3 to 11.7 mA cm(-2)(while retaining the open-circuit voltage and fill factor) to result in an enhanced power conversion efficiency of 15.1%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据