4.8 Article

Measurement of Electrophysiological Signals In Vitro Using High-Performance Organic Electrochemical Transistors

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 31, 期 1, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202007086

关键词

bioelectronics; electrophysiology; interdigitated electrode arrays; organic electrochemical transistors; plastic electronics

资金

  1. UK Engineering and Physical Sciences Research Council (EPSRC) [EP/L016737/1]
  2. Imperial College London Centre for Doctoral Training in Neurotechnology

向作者/读者索取更多资源

OECTs have proven to be successful in transducing physiological information and measuring high-frequency signals, with significant improvements in key performance parameters like peak transconductance and response time.
Biological environments use ions in charge transport for information transmission. The properties of mixed electronic and ionic conductivity in organic materials make them ideal candidates to transduce physiological information into electronically processable signals. A device proven to be highly successful in measuring such information is the organic electrochemical transistor (OECT). Previous electrophysiological measurements performed using OECTs show superior signal-to-noise ratios than electrodes at low frequencies. Subsequent development has significantly improved critical performance parameters such as transconductance and response time. Here, interdigitated-electrode OECTs are fabricated on flexible substrates, with one such state-of-the-art device achieving a peak transconductance of 139 mS with a 138 mu s response time. The devices are implemented into an array with interconnects suitable for micro-electrocorticographic application and eight architecture variations are compared. The two best-performing arrays are subject to the full electrophysiological spectrum using prerecorded signals. With frequency filtering, kHz-scale frequencies with 10 mu V-scale voltages are resolved. This is supported by a novel quantification of the noise, which compares the gate voltage input and drain current output. These results demonstrate that high-performance OECTs can resolve the full electrophysiological spectrum and suggest that superior signal-to-noise ratios could be achieved in high frequency measurements of multiunit activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据