4.8 Article

Self-Powered, Electrochemical Carbon Nanotube Pressure Sensors for Wave Monitoring

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 42, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202004564

关键词

carbon nanotubes; electrochemical sensing; pressure sensors; self-powered sensors; wave monitoring

资金

  1. National Natural Science Foundation of China [51572095]
  2. Natural Science Foundation of Hubei Province, China [2018CFA049]
  3. Robert A. Welch Foundation [AT-0029]
  4. China Scholarship Council (CSC)

向作者/读者索取更多资源

Underwater pressure sensors with high sensitivity over a broad pressure range are urgently required for the collection of valuable data on pressure changes associated with various wave motions. Here, a class of carbon-nanotube-based pressure sensors, which can be directly used in oceans without packaging, is reported. They use salt water as an electrolyte for electrochemically converting mechanical hydraulic energy into electrical energy and generating electrical signals in response to pressure changes in seawater. They can sense wave amplitudes from 1 mm (i.e., 10 Pa) to 30 m, which covers the range of almost all wave motions, and provide high stability during cycling in seawater. Also, they are self-powered and provide harvested gravimetric energy that is six orders of magnitude higher than that for commercial piezoelectric sensors for frequencies below 2 Hz (the range within most wave motion occurs), which has not been achieved before. These self-powered sensors operate from 4 to 60 degrees C and in direct contact with salt water having a wide range of salinities (from 0.1 to 5 mol L-1). Importantly, the unique electrochemical mechanism provides a new pressure sensing strategy to address the challenges in realizing high precision, low-frequency pressure measurements, and a broad detection range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据