4.8 Review

Potential Applications of Advanced Nano/Hydrogels in Biomedicine: Static, Dynamic, Multi-Stage, and Bioinspired

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 45, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202004098

关键词

advanced hydrogel; bioinspired; drug delivery; dynamic; multi-stage; nanomedicine; static

资金

  1. Tabriz University of Medical Sciences [62939]
  2. NIMAD [978679]
  3. US NIH [R01AI050875, R21AI121700]

向作者/读者索取更多资源

Novel advanced hydrogels can provide a versatile platform for controlled delivery and release of various cargos, with a myriad of biomedical applications. These gel-based nanostructures possess good biocompatibility, biodegradability, flexibility, multifunctionality, can respond to internal or external stimuli, and can adapt to their surrounding environment. This new generation of hydrogels is not only capable of serving as targeted drug delivery vehicles, but they can also perform a variety of tasks within living cells and organisms. In this review, advanced hydrogels are classified as static, dynamic, multi-stage, or bioinspired. They can be used as cell-free gene expression platforms for gene therapy. Administration of nanogel-based sprays can act as an immunovaccine priming macrophages toward the M1 phenotype to avoid cancer recurrence following surgery. Nanogels can also serve as a dual biosensing and capture platform for liquid biopsies, and can recognize and remove circulating cancer cells from the blood of cancer patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据