4.7 Article

Giant shape- and size-dependent compressive strength of molybdenum nano- and microparticles

期刊

ACTA MATERIALIA
卷 198, 期 -, 页码 72-84

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.07.054

关键词

Strength; Nanoparticles; Dislocations; Molecular dynamics; Theoretical strength of metals

资金

  1. Israel Science Foundation [617/19, 1521/16]

向作者/读者索取更多资源

The ability to process metallic samples at the sub-micrometer scale raised the strength limits of pure metals to the Giga Pascal (GPa) range. Here, we fabricated Mo nanoparticles with a giant compressive strength surpassing the previous strength records of metallic materials. Round and faceted particles were produced by manipulating the annealing atmosphere during two-stage solid-state dewetting of Mo thin films deposited on sapphire. The round particle underwent a huge elastic deformation before yielding abruptly. Using finite element analysis, we found that the resolved shear stress on a [112]< 110 > slip system beneath the punch reaches an enormous value of 20++/- 1 GPa at yield, regardless of particle size. The faceted nanoparticles, contrarily, followed a smaller is stronger rule, with uniaxial compressive strength of up to 46 GPa for the smallest nanoparticles. Molecular dynamics simulations indicated that the size effect diminishes with increasing roundness of the particle edges. This work demonstrates how shape and size of particles can be manipulated to achieve giant strength. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据