4.8 Review

Calcium phosphate cements: Optimization toward biodegradability

期刊

ACTA BIOMATERIALIA
卷 119, 期 -, 页码 1-12

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2020.10.013

关键词

Calcium phosphate cements; degradation; macroporosity

资金

  1. Life Science & Health, Dutch Ministry of Economic Affairs [BONE-IP2]

向作者/读者索取更多资源

Synthetic calcium phosphate ceramics are widely used for bone regenerative treatments due to their bioactivity and osteoconductive properties. Injectable CPCs are appealing for minimally invasive surgery and filling irregular bone defects, but their poor degradability can be addressed by introducing macroporosity to accelerate new bone formation.
Synthetic calcium phosphate (CaP) ceramics represent the most widely used biomaterials for bone regenerative treatments due to their biological performance that is characterized by bioactivity and osteoconductive properties. From a clinical perspective, injectable CaP cements (CPCs) are highly appealing, as CPCs can be applied using minimally invasive surgery and can be molded to optimally fill irregular bone defects. Such CPCs are prepared from a powder and a liquid component, which upon mixing form a paste that can be injected into a bone defect and hardens in situ within an appropriate clinical time window. However, a major drawback of CPCs is their poor degradability. Ideally, CPCs should degrade at a suitable pace to allow for concomitant new bone to form. To overcome this shortcoming, control over CPC degradation has been explored using multiple approaches that introduce macroporosity within CPCs. This strategy enables faster degradation of CPC by increasing the surface area available to interact with the biological surroundings, leading to accelerated new bone formation. For a comprehensive overview of the path to degradable CPCs, this review presents the experimental procedures followed for their development with specific emphasis on (bio)material properties and biological performance in pre-clinical bone defect models. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据