4.8 Article

Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications

期刊

ACS NANO
卷 14, 期 11, 页码 14665-14674

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c05493

关键词

wood sponge; piezoelectric nanogenerator; biocompatible and biodegradable; energy source; pressure sensor

向作者/读者索取更多资源

Developing low-cost and biodegradable piezoelectric nanogenerators is of great importance for a variety of applications, from harvesting low-grade mechanical energy to wearable sensors. Many of the most widely used piezoelectric materials, including lead zirconate titanate (PZT), suffer from serious drawbacks such as complicated synthesis, poor mechanical properties (e.g., brittleness), and toxic composition, limiting their development for biomedical applications and posing environmental problems for their disposal. Here, we report a low-cost, biodegradable, biocompatible, and highly compressible piezoelectric nanogenerator based on a wood sponge obtained with a simple delignification process. Thanks to the enhanced compressibility of the wood sponge, our wood nanogenerator (15 x 15 x 14 mm(3), longitudinal x radial x tangential) can generate an output voltage of up to 0.69 V, 85 times higher than that generated by native (untreated) wood, and it shows stable performance under repeated cyclic compression (>= 600 cycles). Our approach suggests the importance of increased compressibility of bulk materials for improving their piezoelectric output. We demonstrate the versatility of our nanogenerator by showing its application both as a wearable movement monitoring system (made with a single wood sponge) and as a large-scale prototype with increased output (made with 30 wood sponges) able to power simple electronic devices (a LED light, a LCD screen). Moreover, we demonstrate the biodegradability of our wood sponge piezoelectric nanogenerator by studying its decomposition with cellulose-degrading fungi. Our results showcase the potential application of a wood sponge as a sustainable energy source, as a wearable device for monitoring human motions, and its contribution to environmental sustainability by electronic waste reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据