4.8 Article

Synthesis, Transfer, and Properties of Layered FeTe2 Nanocrystals

期刊

ACS NANO
卷 14, 期 9, 页码 11473-11481

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c03863

关键词

two-dimensional materials; layered FeTe2; chemical vapor deposition; transfer; electrical transport

资金

  1. National Natural Science Foundation of China [61904113]
  2. Science and Technology Innovation Commission of Shenzhen [JCYJ20180305125616770]
  3. STEM assistance from the Electron Microscopy Center of the Shenzhen University

向作者/读者索取更多资源

Different from layered two-dimensional (2D) transition metal dichalcogenides (TMDs), iron dichalcogenides crystallize in the most common three-dimensional pyrite or marcasite structures. Layered iron dichalcogenides are rarely reported and little is known about their structures and properties. Here, layered hexagonal phase iron ditelluride FeTe2 (h-FeTe2) nanocrystals are grown on mica by atmospheric pressure chemical vapor deposition (APCVD) method and are fully characterized by various methods. Like other 2D layered TMD materials, the FeTe2 nanoflakes exhibit regular hexagon, half hexagon, or triangle shapes with a controllable thickness of 6-95 nm and lateral length from a few to tens of micrometers. A simple and effective method is used to transfer the FeTe2 nanoflakes from the mica substrate onto any other substrates without quality deterioration by using polystyrene (PS) as a support polymer, which can also be operated in ethanol or ethylene glycol in a glovebox to avoid contact with water and air. Temperature-dependent electrical transport demonstrates that the FeTe2 nanoflake is a semiconductor with a variable range hopping (VRH) conduction, and its nonsaturated linear magnetoresistance (MR) reaches up to 10.4% under magnetic field of 9 T at 2 K, both probably due to its structure disorders. No signature of magnetic ordering is observed down to 2 K. The CVD growth of this layered FeTe2 represents an addition to the extensive library of 2D materials, particularly iron chalcogenides or alloys. Synthesis, properties, and even doping of phase pure h-FeTe2 call for further study in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据