4.8 Article

Harps under Heavy Fog Conditions: Superior to Meshes but Prone to Tangling

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 42, 页码 48124-48132

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c12329

关键词

fog harvesting; fog harp; field test; wire tangling; anti-clogging; droplet; elastocapillarity

资金

  1. GreenShift Corporation

向作者/读者索取更多资源

In arid yet foggy regions, fog harvesting is emerging as a promising approach to combat water scarcity. The mesh netting used by current fog harvesters suffers from inefficient drainage, which severely constrains the water collection efficiency. Recently, it was demonstrated that fog harps can significantly enhance water harvesting as the vertical wire array does not obstruct the drainage pathway. However, fabrication limitations resulted in a very low shade coefficient of 18% for the initial fog harp prototype and the field testing was geographically confined to light fog conditions. Here, we use wire-electrical discharge machining (wire-EDM) to machine ultrafine comb arrays; winding the harp wire along a comb-embedded reinforced frame enabled a shade coefficient of 50%. To field test under heavy fog conditions, we placed the harvesters on a closed-circuit test road and inundated them with fog produced by an array of overlying fog towers. On average, the fog harps collected about three times more water than the mesh netting. During fog harvesting, the harp wires were observed to tangle together due to the surface tension of water. We developed a rational model to predict the extent of the tangling problem for any given fog harp design. By designing next-generation fog harps to be anti-tangling, we expect that even larger performance multipliers will be possible compared to the current mesh harvesters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据