4.8 Article

Robustness-Heterogeneity-Induced Ultrathin 2D Structure in Li Plating for Highly Reversible Li-Metal Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 41, 页码 46132-46145

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c13283

关键词

Li-metal batteries; Li dendrite suppression; 2D nanostructure; polydopamine coating; lithiophilic modulation

资金

  1. National Key R&D Program of China [2016YFB0901600]
  2. NSAF [U1830113]
  3. National Natural Science Foundation of China [51772313, 21975276]
  4. Shanghai Science and Technology Committee [20520710800]

向作者/读者索取更多资源

Anode interface modification is crucial for the stabilization of Li-metal batteries (LMBs), which have been considered as the most promising system for the electric vehicle market owing to their high energy density (500 W h kg(-1)). However, the biggest challenge for LMBs lies in the preservation of anode reversibility, including plated Li morphology control and dendritic Li inhibition during cycling. Here, we propose a nanostructure modulation strategy of Li grains and plating to activate the anode kinetics of LMBs without the compromise of anode stability. This modulation is triggered by the rapid deposition of ultrathin polydopamine coating on the Cu foil (PDA@Cu), which results in an unusual interlaced growth of vertical or lie-down two-dimensional Li nanoflakes on PDA. The high binding energy (>3 eV) between Li atoms and rich imino/carbonyl groups enables a superior lithiophilicity of PDA to homogenize the Li-ion flowing and Li-mass electroplating with negligible nucleation overpotential. The high Coulombic efficiency (98%) and low voltage hysteresis (similar to 20 mV) are stabilized for at least 300 cycles in the Li-PDA@Cu cell architecture. This PDA@Cu electrode can even tolerate much higher current densities of 5 and 10 mA cm(-2) for 170 and 100 cycles, respectively. The interlaced network of Li nanosheets reinforces the electric contact and therefore charge transfer at the anode-electrolyte interface characterized by small interfacial resistance (<3 Omega cm(2)) and activation energy (0.28 eV). A viewpoint of robustness loss or mechanical heterogeneity in Li plating is discussed to disclose the evolution from column-like Li grains to porous Li sponges and then to compactly stacked Li nanoflakes with porosity shrinkage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据