4.8 Article

Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H2 Sensors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 40, 页码 45243-45253

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c10460

关键词

fiber-type multimodal sensor; hydrogen sensors; strain sensors; stretchable electronics; wearable electronics

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2017M3A7B4049466, NRF-2019M3C1B8090845, NRF-2017M3A9G8084463]
  2. Priority Research Centers Program through the NRF [NRF-2019R1A6A1A11055660]
  3. KIST Institutional Program [2Z06430-20-P064]
  4. Graduate School of YONSEI University

向作者/读者索取更多资源

The need for wearable electronic devices continues to grow, and the research is under way for stretchable fiber-type sensors that are sensitive to the surrounding atmosphere and will provide proficient measurement capabilities. Currently, one-dimensional fiber sensors have several limitations for their extensive use because of the complex structures of the sensing mechanisms. Thus, it is essential to miniaturize these materials with durability while integrating multiple sensing capabilities. Herein, we present an ultrasensitive and stretchable conductive fiber sensor using PdNP networks embedded in elastomeric polymers for crack-based strain and H-2 sensing. The fiber multimodal sensors show a gauge factor of similar to 2040 under 70% strain and reliable mechanical deformation tolerance (10,000 stretching cycles) in the strain-sensor mode. For H-2 sensing, the fiber multimodal sensors exhibit a wide sensing range of high sensitivity: -0.43% response at 5 ppm (0.0005%) H-2 gas and -27.3% response at 10% H-2 gas. For the first time, we demonstrate highly stretchable H-2 sensors that can detect H-2 gas under 110% strain with mechanical durability. As demonstrated, their stable performance allows them to be used in wearable applications that integrate fiber multimodal sensors into industrial safety clothing along with a microinorganic light-emitting diode for visual indication, which exhibits proper activation upon H-2 gas exposure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据