4.8 Article

The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 39, 页码 43474-43487

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c12900

关键词

iron oxides; nanoparticle uptake; magnetic hyperthermia; apoptosis; cell death pathways; 3D cell culture; macrophages

资金

  1. European Commission through the M-ERA.NET [PCIN-2017-060]
  2. FCT/MCTES M-ERA [NET/2/0008/2016]
  3. Spanish MCIU [PGC2018-096016-B-I00, BIO2017-84246-C2-1-R]
  4. Applied Molecular Biosciences Unit-UCIBIO - national funds from FCT [UIDB/04378/2020]
  5. Fondo Social de la DGA (grupos DGA)
  6. Santander-Universidad Zaragoza Fellowship program
  7. Xunta de Galicia [ED431E2018/08]
  8. University of York ENERGY [EP/K031589/1]
  9. Santander Universidad
  10. Erasmus Campus Iberus
  11. Jose Castillejo program [CAS18/00233]
  12. Ramon y Cajal program [RYC-2014-15512, RYC-2015-17640]

向作者/读者索取更多资源

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据