4.8 Article

Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 39, 页码 43553-43559

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c09374

关键词

passive radiative cooling; optical materials; electrospinning; thermal radiation; nanofibers

资金

  1. Michigan Economic Development Corporation through the ADVANCE Grant program
  2. University of Michigan MCubed program
  3. National Science Foundation Graduate Research Fellowship Program [NSF DGE 1256260]
  4. 3M Nontenured Faculty Award

向作者/读者索取更多资源

Radiative cooling can alleviate urban heat island effects and passively improve personal thermal comfort. Among many emerging approaches, infrared (IR) transparent films and fabrics are promising because they can allow objects to directly radiate heat through bands of atmospheric transparency while blocking solar heating. However, achieving high solar reflectance while maintaining IR transmittance using scalable nanostructured materials requires control over the shape and size distribution of the nanoscale building blocks. Here, we investigate the scattering and transmission properties of electrospun polyacrylonitrile (PAN) nanofibers that feature spherical, ellipsoidal, and cylindrical morphologies. We find that nanofibers that have ellipsoidal beads exhibit the most efficient solar scattering, mainly due to the additive dielectric resonances of the ellipsoidal and cylindrical geometries, as confirmed through electromagnetic simulations. This favorable scattering decreases the amount of material needed to reach above 95% solar reflectance, which, in turn, enables high infrared transmittance (>70%) despite PAN's intrinsic IR absorption. We further show that these PAN nanofibers (nanoPAN) can enable cooling of surfaces with relatively low solar reflectance, which is demonstrated by covering a reference blackbody surface with beaded nanoPAN. During peak solar hours, this configuration lowers the temperature of the black surface by approximately 50 degrees C and is able to achieve as low as 3 degrees C below the ambient air temperature. More broadly, our demonstration using PAN, which is not as IR transparent as more commonly used polyethylene, provides a method for utilizing lower purity materials in radiative cooling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据