4.8 Article

Hollow Octahedral Cu2-xS/CdS/Bi2S3 p-n-p Type Tandem Heterojunctions for Efficient Photothermal Effect and Robust Visible-Light-Driven Photocatalytic Performance

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 36, 页码 40328-40338

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c11360

关键词

photocatalysis; hollow structure; tandem heterojunctions; surface plasmon resonance; photothermal effect

资金

  1. National Natural Science Foundation of China
  2. Natural Science Foundation of Heilongjiang Province

向作者/读者索取更多资源

Reasonable design of the nanostructure of heterogeneous photocatalysts is of great significance for improving their performance and stability. We report the design and fabrication of hollow sandwich-layered octahedral Cu2-xS/CdS/Bi2S3 p-n-p type tandem heterojunctions constructed via the continuous growth deposition method on the surface of hollow octahedral Cu2-xS with well-defined structures and interfaces. The unique hollow sandwich nanostructure has a large specific surface area and abundant reaction sites and enhances the separation and transfer of photogenerated carriers. In addition, the formation of a p-n-p heterojunction coupled with the surface plasmon resonance effect of Cu2-xS could also aid in photocatalytic H-2 evolution performance and photocatalytic degradation efficiency. Under vis-NIR light irradiation, the optimized Cu2-xS/CdS/Bi2S3 photocatalyst displays a notable H-2 production rate of 8012 mu mol h(-1) g(-1), and 2,4-dichlorophenol is almost completely photocatalytically degraded in 150 min. This strategy and rational design offer a new path toward the design of specific nanocatalysts with enhanced activity and stability and challenging reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据