4.8 Article

Efficient Blood-toleration Enzymatic Biofuel Cell via In Situ Protection of an Enzyme Catalyst

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 37, 页码 41429-41436

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c11186

关键词

enzymatic biofuel cell; enzyme catalysts; in situ protection; deactivation resistance

资金

  1. National Natural Science Foundation of China [21775067]

向作者/读者索取更多资源

The enzymatic biofuel cell (EBFC) has been considered as a promising implantable energy generator because it can extract energy from a living body without any harm to the host. However, an unprotected enzyme will be destabilized and even eventually be deactivated in human blood. Thus, the performance of implantable EBFC has received barely any improvement. It is therefore a breakthrough in realizing a superior efficient EBFC that can work stably in human blood which relies in protecting the enzyme to defend it from the attack of biological molecules in human blood. Herein, we innovatively created a single-walled carbon nanotube (SWCNT) and cascaded enzyme-glucose oxidase (GOx)/horseradish peroxidase (HRP) coembedded hydrophilic MAF-7 biocatalyst (SWCNT-MAF-7-GOx/HRP). The SWCNT-MAF-7-GOx/HRP is highly stable in electrocatalytic activity even when it is exposed to high temperature and some molecular inhibitors. In addition, we were pleasantly surprised to find that the electrocatalytic activity of GOx/HRP in hydrophilic SWCNT-MAF-7 far surpasses that of the GOx/HRP in hydrophobic SWCNT-ZIF-8. In human whole blood, the SWCNT-MAF-7-GOx/HRP catalytic EBFC exhibits an eightfold increase in power density (119 mu W cm(-2) vs 14 mu W cm(-2)) and 13-fold increase in stability in comparison with the EBFC based on an unprotected enzyme. In this study, the application of metal-organic framework-based encapsulation techniques in the field of biofuel cells is successfully realized, breaking a new path for creating implantable bioelectrical-generating devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据