4.8 Article

Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 12, 期 43, 页码 48284-48295

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c12341

关键词

protein nanoparticle; protein corona; mass spectrometry; macrophage; surface charge; hydrophobicity

资金

  1. M. T. Campagna

向作者/读者索取更多资源

Protein nanoparticles are biomaterials composed entirely of proteins, with the protein sequence and structure determining the nanoparticle physicochemical properties. Upon exposure to physiological or environmental fluids, it is likely that protein nanoparticles, like synthetic nanoparticles, will adsorb proteins and this protein corona will be dependent on the surface properties of the protein nanoparticles. As there is little understanding of this phenomenon for engineered protein nanoparticles, the purpose of this work was to create protein nanoparticles with variable surface hydrophobicity and surface charge and establish the effect of these properties on the mass and composition of the adsorbed corona, using the fetal bovine serum as a model physiological solution. Albumin, cationic albumin, and ovalbumin cross-linked nanoparticles were developed for this investigation and their adsorbed protein coronas were isolated and characterized by gel electrophoresis and nanoliquid chromatography mass spectrometry. Distinct trends in corona mass and composition were identified for protein nanoparticles based on surface charge and surface hydrophobicity. Proteomic analyses revealed unique protein corona patterns and identified distinct proteins that are known to affect nanoparticle clearance in vivo. Further, the protein corona influenced nanoparticle internalization in vitro in a macrophage cell line. Altogether, these results demonstrate the strong effect protein identity and properties have on the corona formed on nanoparticles made from that protein. This work builds the foundation for future study of protein coronas on the wide array of protein nanoparticles used in nanomedicine and environmental applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据