4.3 Article

Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy

期刊

NEUROLOGY-GENETICS
卷 6, 期 3, 页码 -

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1212/NXG.0000000000000428

关键词

-

资金

  1. Universite d'Angers
  2. CHU d'Angers
  3. Region Pays de la Loire
  4. Angers LoireMetropole
  5. Fondation Maladies Rares
  6. Fondation VISIO
  7. Kjer-France
  8. Ouvrir Les Yeux
  9. Retina France
  10. UNADEV
  11. Fondation de France
  12. Association Francaise contre les Myopathies

向作者/读者索取更多资源

ObjectiveTo improve the genetic diagnosis of dominant optic atrophy (DOA), the most frequently inherited optic nerve disease, and infer genotype-phenotype correlations.MethodsExonic sequences of 22 genes were screened by new-generation sequencing in patients with DOA who were investigated for ophthalmology, neurology, and brain MRI.ResultsWe identified 7 and 8 new heterozygous pathogenic variants in SPG7 and AFG3L2. Both genes encode for mitochondrial matricial AAA (m-AAA) proteases, initially involved in recessive hereditary spastic paraplegia type 7 (HSP7) and dominant spinocerebellar ataxia 28 (SCA28), respectively. Notably, variants in AFG3L2 that result in DOA are located in different domains to those reported in SCA28, which likely explains the lack of clinical overlap between these 2 phenotypic manifestations. In comparison, the SPG7 variants identified in DOA are interspersed among those responsible for HSP7 in which optic neuropathy has previously been reported.ConclusionsOur results position SPG7 and AFG3L2 as candidate genes to be screened in DOA and indicate that regulation of mitochondrial protein homeostasis and maturation by m-AAA proteases are crucial for the maintenance of optic nerve physiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据