4.7 Article

Heat spreading of liquid jet impingement cooling of cold plate heat sink with different fin shapes

期刊

出版社

ELSEVIER
DOI: 10.1016/j.csite.2020.100638

关键词

Heat spreading; Thermal resistance; Cold plate heat sink; Heat transfer; Liquid impingement

资金

  1. Excellent Center for Sustainable Engineering (ECSE)
  2. Faculty of Engineering of the Srinakharinwirot University (SWU)

向作者/读者索取更多资源

This paper presents the heat spreading of the cold plate heat sink with different fin shapes (rectangular, circular, conical) using the jet impingement technique impinging on the heating surface. The parametric monitoring mainly focused on the liquid mass flow rate, inlet coolant temperature, and fin shapes are investigated. The results showed that the fin shapes of the heat sink influencing its total thermal resistance but small decrement in heat spreading resistance. By fixing other parameters and a jet-plate spacing to jet diameter ratios H/D = 0.8 is considered, it is shown that the circular fin has a higher thermal performance by lowering thermal resistance of the heatsink for 12%, and 25% compared with the rectangular and the conical fin, respectively. More importantly, the lower coolant temperature is reduced heat spreading, results in total thermal resistance are developed. The numerical was carried out, and the clear temperature distribution phenomena with different fin shapes are obtained, which contribute to the heat spreading, spreading resistance, and thermal resistance to the cold plate heat sink for cooling in electronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据