4.7 Article

Tailoring the Oxygen Vacancy to Achieve Fast Intrinsic Proton Transport in a Perovskite Cathode for Protonic Ceramic Fuel Cells

期刊

ACS APPLIED ENERGY MATERIALS
卷 3, 期 5, 页码 4914-4922

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.0c00486

关键词

cathode; perovskite oxides; proton transfer; protonic ceramic fuel cells

资金

  1. National Natural Science Foundation of China [21376001, 21576028, 21506012]

向作者/读者索取更多资源

Protonic ceramic fuel cells (PCFCs) are receiving increasing attention because of their high energy conversion efficiency. However, traditional mixed oxygen-ionic and electronic conductors (MOECs) show sluggish oxygen reduction kinetics when used in PCFCs because of their intrinsic low protonic conductivity. Herein, it is reported that cooperatively regulating the concentration and basicity of oxygen vacancies can result in fast proton transport in MOECs, which is demonstrated in a Zr4+-doped Sr2Fe1.5Mo0.5O6-delta (SFMZ) perovskite. The so-obtained SFMZ perovskite renders plentiful oxygen vacancies and strong hydration ability, which can boost the formation of protonic defects. Furthermore, the chemical diffusion coefficient of protons (D-H,D-chem) is established first to determine the proton mobility of the cathode. The results indicate that SFMZ exhibits improved proton diffusion kinetics with a D-H,D-chem value of 8.71 x 10(-7) cm(2) s(-1) at 700 degrees C, comparable to the diffusion coefficient of the commonly used protonic electrolyte BaZr0.1Ce0.7Y0.1Yb0.1O3-delta of 1.84 x 10(-6) cm(2) s(-1). A low polarization resistance of 0.169 Omega cm(2) and a peak power density as high as 0.79 W cm(-2) were achieved at 700 degrees C with the SFMZ cathode. Such excellent performance suggests that rationally tailoring the oxygen vacancy is a feasible strategy to promote proton diffusion in perovskite-structured electrode materials as efficient PCFC cathodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据