4.6 Review

Carbon materials for high-performance lithium-ion capacitor

期刊

CURRENT OPINION IN ELECTROCHEMISTRY
卷 21, 期 -, 页码 31-39

出版社

ELSEVIER
DOI: 10.1016/j.coelec.2020.01.005

关键词

Electrochemistry; Lithium-ion capacitors; Kinetic imbalance; Carbon materials

资金

  1. National Key Research and Development Program of China [2018YFC1901605]
  2. National Postdoctoral Program for Innovative Talents [BX201600192]
  3. Hunan Provincial Science and Technology Plan [2017TP1001]
  4. Innovation Mover Program of Central South University [GCX20190893Y]

向作者/读者索取更多资源

As new-generation electrochemical energy-storage systems, lithium-ion capacitors (LICs) have combined the advantages of both lithium-ion batteries and supercapacitors, manifesting the merits of high-energy density under power density. Triggered by outstanding physicochemical characteristics and two different charge-storage mechanisms (including the Li+ insertion and electric double-layer capacitor characteristics), carbon materials have been intensively studied for fabricating high-performance LICs. However, the construction of high-performance LICs have been greatly limited by the unbalanced capacity and kinetic imbalance between the sluggish ion diffusion process of anode and fast electrostatic accumulation behavior of cathode. Thus, aimed at improving two different electrochemical storage performances, rational design of carbon materials has been summarized in this short review, which provide the directional guidance for engineering optimized carbon electrodes and become a breakthrough for improving energy/power densities of LICs. Furthermore, the prospects and unresolved scientific issues of LICs are also proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据