4.8 Article

Biodegradation behavior of micro-arc oxidation coating on magnesium alloy-from a protein perspective

期刊

BIOACTIVE MATERIALS
卷 5, 期 2, 页码 398-409

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2020.03.005

关键词

Magnesium alloy; Protein; Degradation; Micro-arc oxidation; Biocompatibility

资金

  1. National Natural Science Foundation of China [51571134]
  2. SDUST Research Fund [2014TDJH104]

向作者/读者索取更多资源

Protein exerts a critical influence on the degradation behavior of absorbable magnesium (Mg)-based implants. However, the interaction mechanism between protein and a micro-arc oxidation (MAO) coating on Mg alloys remains unclear. Hereby, a MAO coating was fabricated on AZ31 Mg alloy. And its degradation behavior in phosphate buffer saline (PBS) containing bovine serum albumin (BSA) was investigated and compared with that of the uncoated alloy. Surface morphologies and chemical compositions were studied using Field-emission scanning electron microscope (FE-SEM), Fourier transform infrared spectrophotometer (FT-IR) and X-ray diffraction (XRD). The degradation behavior of the bare Mg alloy and its MAO coating was studied through electrochemical and hydrogen evolution tests. Cytotoxicity assay was applied to evaluate the biocompatibility of Mg alloy substrate and MAO coating. Results indicated that the presence of BSA decreased the degradation rate of Mg alloy substrate because BSA (RCH(NH2)COO.) molecules combined with Mg2+ ions to form (RCH(NH2)COO)(2)Mg and thus inhibited the dissolution of Mg(OH)(2) by impeding the attack of Cl. ions. In the case of MAO coated Mg alloy, the adsorption of BSA on MAO coating and the formation of (RCH(NH2)COO)(2)Mg exhibited a synergistic effect and enhanced the corrosion resistance of the coated alloy significantly. Furthermore, cell bioactive assay suggested that the MAO coating had good viability for MG63 cells due to its high surface area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据