4.8 Article

Mineralization of calcium phosphate controlled by biomimetic self-assembled peptide monolayers via surface electrostatic potentials

期刊

BIOACTIVE MATERIALS
卷 5, 期 2, 页码 387-397

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2020.03.003

关键词

Hydroxyapatite; Biomineralization; Self-assembled monolayer; Oligopeptides; Dentin phosphoprotein

资金

  1. National Natural Science Foundation of China [31771056]

向作者/读者索取更多资源

The functions of acidic-rich domains in non-collagenous protein during biomineralization are thought to induce nucleation and control the growth of hydroxyapatite. The tripeptide Asp-Ser-Ser (DSS) repeats are the most common acidic-rich repeated unit in non-collagenous protein of dentin phosphoprotein, the functions of which have aroused extensive interests. In this study, biomimetic peptides (DSS)(n) (n = 2 or 3) were designed and fabricated into self-assembled monolayers (SAMs) on Au (111) surface as biomimetic organic templates to regulate hydroxyapatite (HAp) mineralization in 1.5 simulated body fluid (1.5 SBF) at 37 degrees C. The early mineralization processes and minerals deposited on the SAMs were characterized by X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy analyses. The SAM-DSS9/DSS9G showed the highest capacity to induce HAp nucleation and growth, followed by SAM-DSS6/DSS6G, SAM-COOH, and SAMOH. The SAM-(DSS)(n) had more negative zeta potentials than SAM-COOH surface, indicating that DSS repeats contributed to the biomineralization, which not only provided strong affinity with Ca2+ ions through direct electrostatic bonds, but more importantly influence surface electrostatic potentials of the assembled organic template for nucleation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据