4.7 Article

Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods

期刊

JOURNAL OF BUILDING ENGINEERING
卷 32, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jobe.2020.101629

关键词

Solar power forecast; Residential smart microgrid; Numerical weather prediction (NWP) model; Artificial intelligence (AI); Multi-variable regression (MVR); Support vector machine (SVM); Neural network (NN)

向作者/读者索取更多资源

Solar power forecast is a much needed means for grid operators, particularly in residential micmgrids, to manage the produced energy in a dispatchable fashion. Deterministic methods are unable to accurately forecast the intermittent solar power generation since they depend on unique sets of inputs and outputs. Therefore, stochastic methods and artificially intelligent (AI) strategies are utilized for solar power forecast. In this work, a neural network (NN) -based numerical weather prediction (NWP) model is developed for a residential microgrid in San Diego, California considering all key weather parameters such as cloud coverage, dew point, solar zenith angle, precipitation, humidity, temperature, and pressure in the year 2016. The developed weather model is then used to predict the generated power in the residential smart micmgrid. To validate the accuracy of the model, the solar irradiance and generated solar power in the residential microgrid are predicted for the year 2017 using the obtained NN-based model. The results are compared with the actual solar irradiance and power in 2017 to evaluate and validate the accuracy of the developed model. Furthermore, to showcase the effectiveness of neural networks in forecasting solar power and the accuracy of the NN-based model, the results are compared with those of two other methods including multi-variable regression (MVR) and support vector machine (SVM) approaches using mean absolute percentage error (MAPE) and mean squared error (MSE) criteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据