4.6 Article

Comparison of Biobutanol Production Pathways via Acetone- Butanol-Ethanol Fermentation Using a Sustainability Exergy-Based Metric

期刊

ACS OMEGA
卷 5, 期 30, 页码 18710-18730

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c01656

关键词

-

资金

  1. Canadian QES Advanced Scholarship Program
  2. Ryerson University
  3. Western University
  4. Doctoral Program of Engineering of the University of Cartagena

向作者/读者索取更多资源

The incorporation of sustainability aspects into the design of chemical processes has been increasing since the last century. Hence, there are several proposed methodologies and indicators to assess chemical facilities through process analysis techniques. A comprehensive assessment involving economic, environmental, safety, and exergy parameters of two alternatives for butanol production from Man ihot esculenta Crantz (cassava waste) is presented in this study. The modeling of process topologies involved using Aspen Plus software. Topology 1 generated a product flow rate of 316,477 t/y of butanol, while this value was 367,037 t/y for topology 2. Both processes used a feed flow of 3,131,439 t/y of biomass. This study used seven technical indicators to evaluate both alternatives, which include the return of investment, discounted payback period, global warming potential, renewability material index, inherent safety index, exergy efficiency, and exergy of waste ratio. Otherwise, this study implemented an aggregate index to assess overall sustainability performance. The results revealed that topology 2 presented higher economic normalized scores for evaluated indicators, but the most crucial difference between these designs came from the safety and exergetic indexes. Topology 1 and topology 2 obtained weighted scores equaling to 0.48 and 0.53; therefore, this study found that the second alternative gives a more sustainable design for butanol production under evaluated conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据