4.6 Article

Thermal and Flow Visualization of a Square Heat Source in a Nanofluid Material with a Cubic-Interpolated Pseudo-particle

期刊

ACS OMEGA
卷 5, 期 28, 页码 17658-17663

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c02173

关键词

-

向作者/读者索取更多资源

Using thermal sources with nanoparticles can change the thermal and velocity distribution and the streamline around solid objects in mechanical devices. In the current study, square-shaped thermal structures are used in the cavity, while the fluid in the domain is fully contaminated with nanoparticles to enhance the heat- and mass-transfer distribution within the system. The connection of thermal elements is installed with equal distance in the domain, and then the nanoparticle is added in the container to improve the heat-transfer rate. The nanofluid is simulated using Cubic-Interpolated Pseudo-particle (CIP) model in the domain with different concentrations. The study shows that the sequence of hot wall structure can disturb the flow as well as thermal distribution. However, a very small streamline can be generated during heat transfer. As a result of thermal structure in the domain, the zero velocity zone in the domain can move to other parts of the cavity. This disturbance can change the heating mechanism in the system, which results in a better rate of heat-transfer characteristics in the system and process engineering. Also, the CIP computing method shows great ability in the modeling of sharp walls/structures with thermal sources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据